JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Adenofection: A Method for Studying the Role of Molecular Chaperones in Cellular Morphodynamics by Depletion-Rescue Experiments.

Cellular processes such as mitosis and cell differentiation are governed by changes in cell shape that largely rely on proper remodeling of the cell cytoskeletal structures. This involves the assembly-disassembly of higher-order macromolecular structures at a given time and location, a process that is particularly sensitive to perturbations caused by overexpression of proteins. Methods that can preserve protein homeostasis and maintain near-to-normal cellular morphology are highly desirable to determine the functional contribution of a protein of interest in a wide range of cellular processes. Transient depletion-rescue experiments based on RNA interference are powerful approaches to analyze protein functions and structural requirements. However, reintroduction of the target protein with minimum deviation from its physiological level is a real challenge. Here we describe a method termed adenofection that was developed to study the role of molecular chaperones and partners in the normal operation of dividing cells and the relationship with actin remodeling. HeLa cells were depleted of BAG3 with siRNA duplexes targeting the 3'UTR region. GFP-tagged BAG3 proteins were reintroduced simultaneously into >75% of the cells using recombinant adenoviruses coupled to transfection reagents. Adenofection enabled to express BAG3-GFP proteins at near physiological levels in HeLa cells depleted of BAG3, in the absence of a stress response. No effect was observed on the levels of endogenous Heat Shock Protein chaperones, the main stress-inducible regulators of protein homeostasis. Furthermore, by adding baculoviruses driving the expression of fluorescent markers at the time of cell transduction-transfection, we could dissect mitotic cell dynamics by time-lapse microscopic analyses with minimum perturbation of normal mitotic progression. Adenofection is applicable also to hard-to-infect mouse cells, and suitable for functional analyses of myoblast differentiation into myotubes. Thus adenofection provides a versatile method to perform structure-function analyses of proteins involved in sensitive biological processes that rely on higher-order cytoskeletal dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app