Add like
Add dislike
Add to saved papers

Moderate Hypothermia Provides Better Protection of the Intestinal Barrier than Deep Hypothermia during Circulatory Arrest in a Piglet Model: A Microdialysis Study.

INTRODUCTION: This study aimed to assess the effects of different temperature settings of hypothermic circulatory arrest (HCA) on intestinal barrier function in a piglet model.

METHODS: Twenty Wuzhishan piglets were randomly assigned to 40 min of HCA at 18°C (DHCA group, n = 5), 40 min of HCA at 24°C (MHCA group, n = 5), normothermic cardiopulmonary bypass (CPB group, n = 5) or sham operation (SO group, n = 5). Serum D-lactate (SDL) and lipopolysaccharide (LPS) levels were determined. Microdialysis parameters (glucose, lactate, pyruvate and glycerol) in the intestinal dialysate were measured. After 180 min of reperfusion, intestinal samples were harvested for real-time polymerase chain reaction and western blotting measurements for E-cadherin and Claudin-1.

RESULTS: Higher levels of SDL and LPS were detected in the DHCA group than in the MHCA group (P < 0.001). Both MHCA and DHCA groups exhibited lower glucose levels, higher lactate and glycerol levels and a higher lactate to pyruvate (L/P) ratio compared with the CPB group (p<0.05); the DHCA group had higher lactate and glycerol levels and a higher L/P ratio (p<0.05) but similar glucose levels compared to the MHCA group. No significant differences in E-cadherin mRNA or protein levels were noted. Upregulation of claudin-1 mRNA levels was detected in both the DHCA and MHCA animals' intestines (P < 0.01), but only the DHCA group exhibited a decrease in claudin-1 protein expression (P < 0.01).

CONCLUSION: HCA altered the energy metabolism and expression of epithelial junctions in the intestine. Moderate hypothermia (24°C) was less detrimental to the markers of normal functioning of the intestinal barrier than deep hypothermia (18°C).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app