Add like
Add dislike
Add to saved papers

Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: Influencing factors and uptake mechanism.

A novel magnetic nanomaterial was synthesized by grafting nitrilotriacetic acid to magnetic graphene oxide (NDMGO), which was applied as an adsorbent for removing tetracycline (TC) from aqueous solutions. The nanomaterial was characterized using TG-DTA, SEM, TEM, XRD, VSM, XPS, Raman, BET surface area and zeta potential measurements. Several experimental conditions (solution pH, adsorption time, temperature, ionic strength and foreign ions) affecting the adsorption process were investigated. The results showed that the TC adsorption capacity could be affected by solution pH. The adsorption capacity of TC increased rapidly in the initial 20min and finally reached equilibrium was about 600min. The pseudo-second-order kinetics provided the better correlation for the experiment data. Various thermodynamic parameters indicated that the adsorption was a spontaneous and endothermic process. The presence of NaCl and background electrolytes in the solution had a slight influence on TC adsorption. Hydrogen bonds, amidation reaction, π-π and cation-π interaction between NDMGO and TC could be used to explain the adsorption mechanism. The regeneration experiment demonstrated that this nanomaterial possessed an excellent regeneration performance. Based on the experimental results and comparative analysis with other adsorbents, the NDMGO was a high-efficiency and reusable adsorbent for TC pollution control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app