Add like
Add dislike
Add to saved papers

Assays for the Degradation of Misfolded Proteins in Cells.

Protein misfolding and aggregation are associated with various neurodegenerative diseases. Cellular mechanisms that recognize and degrade misfolded proteins may serve as potential therapeutic targets. To distinguish degradation of misfolding-prone proteins from other mechanisms that regulate their levels, one important method is to measure protein half-life in cells. However, this can be challenging because misfolding-prone proteins may exist in different forms, including the native form and misfolded forms of distinct characteristics. Here we describe assays to examine the half-life of misfolded proteins in mammalian cells using a highly aggregation-prone protein, Ataxin-1 with an extended polyglutamine (polyQ) stretch, and a conformationally unstable luciferase mutant as models. Cycloheximide chase is combined with cell fractionation to examine the turnover rate of misfolding-prone proteins in various cellular fractions. We further depict a fluorescence-based assay using an enhanced green fluorescence protein (EGFP)-fusion of the luciferase mutant, which can be adapted for high throughput screening on a microplate-reader.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app