Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High extent of O-GlcNAcylation in breast cancer cells correlates with the levels of HAS enzymes, accumulation of hyaluronan, and poor outcome.

PURPOSE: Obesity and oversupply of glucose, e.g., due to nutritional factors may shape the tumor microenvironment favorable for tumor progression. O-GlcNAcylation, a reversible modification of intracellular proteins, influences on several cellular functions and is connected to many diseases including cancer. Glycosaminoglycan hyaluronan (HA) enhances tumor progression and in breast cancer HA accumulation associates strongly with poor outcome. In vitro studies have suggested that O-GlcNAcylation may enhance HA synthesis. The aim of this study was to investigate the correlations between O-GlcNAcylation, HA-related parameters, and disease outcome in a clinical breast cancer material consisting of 278 breast cancer cases.

METHODS: In microscopic analyses, O-GlcNAc staining of the breast carcinoma cells was evaluated in several randomly picked high-power fields of each section. The extent of cytoplasmic O-GlcNAc staining was graded as either low or high according to the intensity of the staining and the percentage of stained cells. The extent of nuclear O-GlcNAc staining was categorized as either low or high according to the percentage of stained nuclei.

RESULTS: A high extent of both cytoplasmic and nuclear O-GlcNAcylation correlated with an increased relapse rate, development of distant metastases, and poor outcome. A high extent of cytoplasmic O-GlcNAcylation correlated also with the accumulation of all hyaluronan synthase (HAS1-3) proteins and with a large amount of HA in the tumor stroma. In addition, a high extent of nuclear O-GlcNAcylation associated with obesity.

CONCLUSIONS: The results suggest a mechanistic association between increased O-GlcNAcylation and HA synthesis, leading to a HA-rich microenvironment favorable for breast cancer progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app