Add like
Add dislike
Add to saved papers

The changing 50% inhibitory concentration (IC50) of cisplatin: a pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer.

Oncotarget 2016 October 26
Inconsistencies in the half-maximal (50%) inhibitory concentration (IC50) data for anticancer chemotherapeutic agents have yielded irreproducible experimental results and thus reciprocally contradictory theories in modern cancer research. The MTT assay is currently the most extensively used method for IC50 measurements. Here, we dissected the critical reasons behind MTT-dependent IC50 inconsistencies. We showed that IC50 errors caused by the technical deficiencies of the MTT assay are large and not adjustable (range: 300-11,000%). To overcome severe MTT artifacts, we developed an unbiased direct IC50 measurement method, the limiting dilution assay. This detection technique led us to the discovery of the inherent density-dependent chemoresistance variation of cancer cells, which is manifold and unpredictable in its forms. The subsequent intracellular signaling pathway analysis indicated that pAkt and p62 expression levels correlated with alterations in the IC50 values for cisplatin in ovarian cancer, providing an explainable mechanism for this property. An in situ pAkt-and-p62-based immunohistochemical (IHCpAkt+p62) scoring system was thereby established. Both the limiting dilution assay and the IHCpAkt+p62 scoring system accurately predicted the primary chemoresistance against cisplatin in ovarian cancer patients. Furthermore, two distinct chemoresistant recurrence patterns were uncovered using these novel detection tools, which were linked to two different forms of density-chemoresistance relationships (positively vs. negatively correlated), respectively. An interpretation was given based on the cancer evolution theory. We concluded that the density-related IC50 uncertainty is a natural property of the cancer cells and that the precise measurement of the density-dependent IC50 spectrum can benefit both basic and clinical cancer research fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app