Add like
Add dislike
Add to saved papers

Lu-, Sm-, and Gd-Doped Ceria: A Comparative Approach to Their Structural Properties.

Inorganic Chemistry 2016 October 18
A room temperature structural study has been performed through the whole compositional range of the (Ce1-x Lux )O2-x/2 system by synchrotron X-ray diffraction and μ-Raman spectroscopy. Samples were synthesized by thermal treatment in air at 1373 K of coprecipitated mixed oxalates. A CeO2 -based solid solution with a fluorite-type structure (F) was found to be stable up to x = 0.4, while at higher Lu content a (F + C) biphasic region was observed, with C being the cubic atomic arrangement typical of sesquioxides of the heaviest rare earths. A comparative approach including also results deriving from other (Ce1-x REx )O2-x/2 systems (RE ≡ Gd and Sm) allowed us to conclude that the compositional extent of the F solid solution is a complex function of RE3+ size and RE compressibility. On this basis, the dependence of ionic conductivity on the RE identity was interpreted as related both to the Ce4+ /RE3+ size closeness and to RE compressibility. Ce4+ /RE3+ dimensional issues were also revealed to rule the appearance of the hybrid structure observed in the two aforementioned systems, consisting of the intimate intergrowth of C microdomains within the F-based host lattice. Moreover, a more extended definition of F-based solid solution, including also the hybrid structure, is formulated; the latter is meant as a modification of the former, occurring when mainly RE-vacancy aggregates are incorporated into the host lattice in spite of isolated RE ions. By μ-Raman spectroscopy it was possible to demonstrate that the mechanism of oxygen vacancy formation is common to all the systems studied, provided that the structure of the F-based solid solution, also including the hybrid structure, is retained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app