Add like
Add dislike
Add to saved papers

A method for imaging and spectroscopy using γ-rays and magnetic resonance.

Nature 2016 September 30
Magnetic resonance imaging (MRI) provides fine spatial resolution, spectral sensitivity and a rich variety of contrast mechanisms for diagnostic medical applications. Nuclear imaging using γ-ray cameras offers the benefits of using small quantities of radioactive tracers that seek specific targets of interest within the body. Here we describe an imaging and spectroscopic modality that combines favourable aspects of both approaches. Spatial information is encoded into the spin orientations of tiny amounts of a polarized radioactive tracer using pulses of both radio-frequency electromagnetic radiation and magnetic-field gradients, as in MRI. However, rather than detecting weak radio-frequency signals, imaging information is obtained through the detection of γ-rays. A single γ-ray detector can be used to acquire an image; no γ-ray camera is needed. We demonstrate the feasibility of our technique by producing images and spectra from a glass cell containing only about 4 × 10(13) atoms (about 1 millicurie) of the metastable isomer (131m)Xe that were polarized using the laser technique of spin-exchange optical pumping. If the cell had instead been filled with water and imaged using conventional MRI, then it would have contained more than 10(24) water molecules. The high sensitivity of our modality expands the breadth of applications of magnetic resonance, and could lead to a new class of radioactive tracers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app