Add like
Add dislike
Add to saved papers

Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: Why to measure glomerular filtration rate with iohexol?

A reliable assessment of glomerular filtration rate (GFR) is of paramount importance in clinical practice as well as epidemiological and clinical research settings. It is recommended by Kidney Disease: Improving Global Outcomes guidelines in specific populations (anorectic, cirrhotic, obese, renal and non-renal transplant patients) where estimation equations are unreliable. Measured GFR is the only valuable test to confirm or confute the status of chronic kidney disease (CKD), to evaluate the slope of renal function decay over time, to assess the suitability of living kidney donors and for dosing of potentially toxic medication with a narrow therapeutic index. Abnormally elevated GFR or hyperfiltration in patients with diabetes or obesity can be correctly diagnosed only by measuring GFR. GFR measurement contributes to assessing the true CKD prevalence rate, avoiding discrepancies due to GFR estimation with different equations. Using measured GFR, successfully accomplished in large epidemiological studies, is the only way to study the potential link between decreased renal function and cardiovascular or total mortality, being sure that this association is not due to confounders, i.e. non-GFR determinants of biomarkers. In clinical research, it has been shown that measured GFR (or measured GFR slope) as a secondary endpoint as compared with estimated GFR detected subtle treatment effects and obtained these results with a comparatively smaller sample size than trials choosing estimated GFR. Measuring GFR by iohexol has several advantages: simplicity, low cost, stability and low interlaboratory variation. Iohexol plasma clearance represents the best chance for implementing a standardized GFR measurement protocol applicable worldwide both in clinical practice and in research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app