Add like
Add dislike
Add to saved papers

Upregulation of MiR-196a promotes cell proliferation by downregulating p27(kip1) in laryngeal cancer.

Biological Research 2016 September 28
BACKGROUND: Accumulating evidence has confirmed that miR-196a plays a critical role in tumorigenesis and tumor progression in a variety of cancers. It has been demonstrated that miR-196a is highly up-regulated in laryngeal cancer by miRNA profiling analysis. However, the functional mechanism of miR-196a in laryngeal cancer remains unclear. This study aims to explore the mechanism of miR-196a in laryngeal cancer.

METHODS: In the present study, we conducted qPCR analysis of miR-196a expression in human laryngeal cancer and showed that miR-196a was overexpressed in tumor-derived samples and laryngeal cancer cell lines compared with matched normal controls. Further functional analysis of miR-196a demonstrated that the inhibition of miR-196a could inhibit laryngeal cell-cycle progression and proliferation in vitro. Luciferase reporter assay and western blot confirmed that miR-196a directly targeted p27kip1. Moreover, in order to investigate whether miR-196a regulated cell growth in laryngeal cancer cells by targeting p27kip1, rescue studies were performed in laryngeal cancer cells.

RESULTS: Results showed that overexpression of p27kip1 rescue decreased cell proliferation caused by miR-196a inhibitors. A negative relation between miR-196a and p27kip1 expression in laryngeal cancer tissues were also noted by further analyses.

CONCLUSIONS: The present study showed that miR-196a was upregulated in laryngeal cancer and promoted cell proliferation by downregulating p27kip1 in laryngeal cancer. However, further studies are needed to verify this finding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app