Add like
Add dislike
Add to saved papers

Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation.

A novel filamentous fungus M-4 strain was isolated from soy sauce koji and identified as Aspergillus oryzae (Collection number: CGMCC 11645) on the basis of morphological characteristics and internal transcribed spacer sequence. M-4 could degrade 80.62 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L(-1)) within 5 days. 3-PBA degradation occurred in accordance with first-order kinetics. The degradation metabolites of 3-PBA were identified through high-performance liquid chromatography-mass spectrometry (HPLC-MS). Relevant enzymatic activities and substrate utilization were also investigated, which indicated that M-4 could effectively degrade the intermediates of 3-PBA. Base on analysis of these metabolites, a novel biochemical pathway for the degradation of 3-PBA was proposed. There exists a mutual transformation between 3-phenoxy-benzyl alcohol and 3-PBA, which was firstly reported about the degradation of 3-PBA and may be attributed to self-protection transformation of M-4; subsequently, 3-PBA was gradually transformed into phenol, 3-hydroxy-5-phenoxy benzoic acid, protocatechuic acid and gallic acid. The safety of M-4 was evaluated via an acute toxicity test in vivo. The biodegradation ability of M-4 without toxic effects reveals that this fungus may be likely to be used for eliminating 3-PBA from contaminated environment or fermented foods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app