Journal Article
Review
Add like
Add dislike
Add to saved papers

Designed Protein Origami.

Proteins are highly perfected natural molecular machines, owing their properties to the complex tertiary structures with precise spatial positioning of different functional groups that have been honed through millennia of evolutionary selection. The prospects of designing new molecular machines and structural scaffolds beyond the limits of natural proteins make design of new protein folds a very attractive prospect. However, de novo design of new protein folds based on optimization of multiple cooperative interactions is very demanding. As a new alternative approach to design new protein folds unseen in nature, folds can be designed as a mathematical graph, by the self-assembly of interacting polypeptide modules within the single chain. Orthogonal coiled-coil dimers seem like an ideal building module due to their shape, adjustable length, and above all their designability. Similar to the approach of DNA nanotechnology, where complex tertiary structures are designed from complementary nucleotide segments, a polypeptide chain composed of a precisely specified sequence of coiled-coil forming segments can be designed to self-assemble into polyhedral scaffolds. This modular approach encompasses long-range interactions that define complex tertiary structures. We envision that by expansion of the toolkit of building blocks and design strategies of the folding pathways protein origami technology will be able to construct diverse molecular machines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app