Add like
Add dislike
Add to saved papers

Retentive strength of implant-supported CAD-CAM lithium disilicate crowns on zirconia custom abutments using 6 different cements.

STATEMENT OF PROBLEM: The optimal retention of implant-supported ceramic crowns on zirconia abutments is a goal of prosthodontic treatment.

PURPOSE: The purpose of this in vitro study was to evaluate the retentive strength of implant-supported IPS e.max CAD-CAM (e.max) crowns bonded to custom zirconia implant abutments with different cements.

MATERIAL AND METHODS: An optical scan of a zirconia custom abutment and a complete-coverage modified crown was designed using an intraoral E4D scanner. One hundred twenty lithium disilicate crowns (IPS e.max CAD) were cemented to 120 zirconia abutment replicas with 1 of 6 cements: Panavia 21 (P21), Multilink Hybrid Abutment (MHA), RelyX Unicem 2 (RXU), RelyX Luting Plus (RLP), Ketac Cem (KC), and Premier Implant (PI). The specimens were stored at 37°C in 100% humidity for 24 hours. Half of the specimens were thermocycled for 500 cycles. The retentive force was measured using a pull-out test with a universal testing machine. Mean retentive strengths (MRS) were calculated using 2-way ANOVA and the Tukey-Kramer test (α=.05).

RESULTS: The MRS (MPa) after 24-hour storage were P21 (3.1), MHA (2.5), RXU (2.5), RLP (1.3), KC (0.9), and PI (0.5). The MRS after thermocycling were MHA (2.5), P21 (2.2), RLP (1.8), KC (1.4), RXU (1.1), and PI (0.3). P21 had the highest MRS after 24-hour storage (P<.001), but after thermocycling MHA had the highest MRS (P<.001). RXU showed a significant decrease in MRS after thermocycling (P<.05). Cement residue was mostly retained on the zirconia abutments for P21, while for the other cements' residue was retained on the lithium disilicate crowns.

CONCLUSIONS: The cements tested presented a range of retentive strengths, providing the clinician with a choice of more or less retentive cements. MHA was the most retentive cement after thermocycling. Thermocycling significantly affected the retentive strengths of the P21 and RXU cements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app