Add like
Add dislike
Add to saved papers

Nerve growth factor release from the urothelium increases via activation of bladder C-fiber in rats with cerebral infarction.

AIMS: There are some reports that bladder C-fibers are partially involved in detrusor overactivity in patients with brain lesions. We investigated the contribution of bladder C-fiber to decreased bladder capacity in rats with cerebral infarction.

METHODS: Cerebral infarction was induced under halothane anesthesia by left middle cerebral artery occlusion with 4-0 nylon thread in female Sprague-Dawley rats. Intramural amounts of ATP and prostaglandin E2 , in vivo and in vitro ATP, NGF, and prostaglandin E2 release from the distended bladder urothelium, and changes in mRNA expressions of sensor molecules and receptors were monitored 6 h after the occlusion. Cystometry was performed in rats with or without resiniferatoxin pretreatment.

RESULTS: Overexpression of sensor molecule, transient receptor potential vanilloid-type channel 1, acid-sensing ion channel 2, purinergic receptors P2X3 , and M2 /M3 muscarinic receptors was found in the bladder. These changes were accompanied by increases in ATP and NGF release from the urothelium. In contrast, when bladder C-fibers were desensitized by resiniferatoxin, no increase in NGF release from the urothelium was found either in vivo or in vitro. There was no difference in the percentage decrease in bladder capacity between cerebral infarction rats pretreated with resiniferatoxin and cerebral infarction rats without pretreatment.

CONCLUSIONS: Results indicate that expression of sensor molecules in the bladder is altered by distant infarction in the brain. ATP and NGF release from the urothelium also increased. NGF release was related to activation of bladder C-fibers. Bladder C-fibers might not contribute much to decreased bladder capacity caused by cerebral infarction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app