Add like
Add dislike
Add to saved papers

Neuropilin-1 Is an Important Niche Component and Exerts Context-Dependent Effects on Hematopoietic Stem Cells.

Marrow adipocytes pose a significant problem in post-transplant regeneration of hematopoiesis owing to their negative effects on regeneration of hematopoiesis. However, the precise mechanism operative in this negative regulation is not clear. In this study, we show that marrow adipocytes express neuropilin-1 (NRP1) as a function of differentiation and inhibit regeneration of hematopoiesis by three principal mechanisms: one, by inducing apoptosis in hematopoietic stem/progenitor cells (HSPCs) through the death receptor-mediated pathway; two, by downregulating CXCR4 expression on the HSPCs through ligand-mediated internalization; and three, by secreting copious amounts of transforming growth factor β1 (TGFβ1), a known inhibitor of hematopoiesis. Silencing of NRP1 in these adipocytes rescued the apoptosis of cocultured HSPCs and boosted the CXCR4 surface expression on them, showing an active role of NRP1 in these processes. However, such silencing had no effect on TGFβ1 secretion and consequent inhibition of hematopoiesis by them, showing that secretion of TGFβ1 by adipocytes is independent of NRP1 expression by them. Surprisingly, mesenchymal stromal cells modified with NRP1 supported expansion of HSPCs having enhanced functionality, suggesting that NRP1 exerts a context-dependent effect on hematopoiesis. Our data demonstrate that NRP1 is an important niche component and exerts context-dependent effects on HSPCs. Based on these data, we speculate that antibody- or peptide-mediated blocking of NRP1-HSC interactions coupled with a pharmacological inhibition of TGFβ1 signaling may help in combating the negative regulation of post-transplant regeneration of hematopoiesis in a more effective manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app