Add like
Add dislike
Add to saved papers

Low noise patch-clamp current amplification by nanoparticles plasmonic-photonic coupling (analysis and modelling).

In this article, a patch-clamp low noise current amplification based on nanoparticles plasmonic radiation is analyzed. It is well-known, a very small current is flowing from different membrane channels and so, for extra processing the current amplification is necessary. It is notable that there are some problems in traditional electronic amplifier due to its noise and bandwidth problem. Because of the important role of the patch-clamp current in cancer research and especially its small amplitude, it is vital to intensify it without adding any noises. In this study, the current amplification is performed firstly: from the excitement of nanoparticles by the patch-clamp pico-ampere current and then, the effect of nanoparticles plasmonic far-field radiation on conductor's carriers, which will cause the current amplification. This relates to the plasmonic-photonic coupling and their effect on conductor carriers as the current perturbation agent. In the steady state, the current amplification can reach to 1000 times of initial level. Furthermore, we investigated the nanoparticles morphology changing effect such as size, nanoparticles inter-distance, and nanoparticles distance from the conductor on the amplifier parameters. Finally, it should note that the original aim is to use nanoparticles plasmonic engineering and their coupling to photonics for output current manipulating.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app