Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxidative DNA Damage and Repair in the Radioresistant Archaeon Thermococcus gammatolerans.

The hyperthermophilic archaeon Thermococcus gammatolerans can resist huge doses of γ-irradiation, up to 5.0 kGy, without loss of viability. The potential to withstand such harsh conditions is probably due to complementary passive and active mechanisms, including repair of damaged chromosomes. In this work, we documented the formation and repair of oxidative DNA lesions in T. gammatolerans. The basal level of the oxidized nucleoside, 8-oxo-2'-deoxyguanosine (8-oxo-dGuo), was established at 9.2 (± 0.9) 8-oxo-dGuo per 106 nucleosides, a higher level than those usually measured in eukaryotic cells or bacteria. A significant increase in oxidative damage, i.e., up to 24.2 (± 8.0) 8-oxo-dGuo/106 nucleosides, was measured for T. gammatolerans exposed to a 5.0 kGy dose of γ-rays. Surprisingly, the yield of radiation-induced modifications was lower than those previously observed for human cells exposed to doses corresponding to a few grays. One hour after irradiation, 8-oxo-dGuo levels were significantly reduced, indicating an efficient repair. Two putative base excision repair (BER) enzymes, TGAM_1277 and TGAM_1653, were demonstrated both by proteomics and transcriptomics to be present in the cells without exposure to ionizing radiation. Their transcripts were moderately upregulated after gamma irradiation. After heterologous production and purification of these enzymes, biochemical assays based on electrophoresis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry indicated that both have a β-elimination cleavage activity. TGAM_1653 repairs 8-oxo-dGuo, whereas TGAM_1277 is also able to remove lesions affecting pyrimidines (1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd)). This work showed that in normal growth conditions or in the presence of a strong oxidative stress, T. gammatolerans has the potential to rapidly reduce the extent of DNA oxidation, with at least these two BER enzymes as bodyguards with distinct substrate ranges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app