Add like
Add dislike
Add to saved papers

Diffusivities of Ternary Mixtures of n-Alkanes with Dissolved Gases by Dynamic Light Scattering.

Theoretical approaches suggest that dynamic light scattering (DLS) signals from low-molecular-weight ternary mixtures are governed by fluctuations in temperature as well as two individual contributions from fluctuations in concentration that are related to the eigenvalues of the Fick diffusion matrix. Until now, this could not be proven experimentally in a conclusive way. In the present study, a detailed analysis of DLS signals in ternary mixtures consisting of n-dodecane (n-C12H26) and n-octacosane (n-C28H58) with dissolved hydrogen (H2), carbon monoxide (CO), or water (H2O) as well as of n-C12H26 or n-C28H58 with dissolved H2 and CO is given for temperatures up to 523 K and pressures up to 4.1 MPa. Thermal diffusivities of pure n-C12H26 and n-C28H58 as well as thermal and mutual diffusivities of their binary mixtures being the basis for the ternary mixtures with dissolved gas were studied for comparison purposes. For the investigated ternary mixtures, three individual signals could be distinguished in the time-resolved analysis of scattered light intensity by using photon correlation spectroscopy (PCS). For the first time, it could be evidenced that these signals are clearly associated with hydrodynamic modes. In most cases, the fastest mode observable for ternary mixtures is associated with the thermal diffusivity. The two further modes obviously related to the molecular mass transport are observable on different time scales and comparable to the modes associated with the concentration fluctuations in the respective binary mixtures. Comparison of the experimental data with results from molecular dynamics simulations revealed very good agreement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app