Add like
Add dislike
Add to saved papers

Examining the evolution of metals utilized in printed circuit boards.

Management of waste electrical and electronic equipment (WEEE) has recently attracted worldwide attention because of high metal concentrations in them. Evolution of toxic and precious metals utilized in WEEE can not only reflect the adventure of eco-design, but can also guide the final recycling option. Pb, As, Cu, Au, Sn and Ag were determined in 10 composite samples of printed circuit boards of cathode ray tube televisions (TV-PCBs) that were produced between 1980 and 2005. The obtained results indicated that average metal concentrations in all TV-PCBs were - Cu: 10.6 ± 4.1%, Sn: 4.21 ± 0.90%, Pb: 3.15 ± 0.54%, Ag: 0.0215 ± 0.0068%, Au: 0.0068 ± 0.0049% and As: 0.0007 ± 0.0004%. No remarkable difference was found in compositions of Pb and Sn over the years, suggesting that there were no major modifications of Sn/Pb solder used in joining the circuitry system. The average composition of Cu fluctuated between 5.10% in 1980 and 12.8% in the mid-1990s and decreased afterwards. The decreases in Ag and Cu compositions could possibly be associated with thinner layers of these metals in newer model products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app