Add like
Add dislike
Add to saved papers

Physical and biological characterization of sericin-loaded copolymer liposomes stabilized by polyvinyl alcohol.

Sericin protein (SP) is widely used as a nutrient biomaterial for biomedical and cosmeceutical applications although it shows low stability to heat and light. To overcome these problems and add value to wastewater from the silk industry, sericin protein was recovered as sericin-loaded copolymer-liposomes (SP-PVA-LP), prepared through thin film hydration. The size and morphology of the liposomes were investigated using dynamic light scattering (DLS), and electron microscopy (SEM and TEM). The particle size, liposome surface morphology and encapsulation efficiency of SP were dependent on PVA concentration. The hydrodynamic size of the nanoparticles was between 200 and 400nm, with the degree of negative charge contingent on sericin loading. SEM and TEM images confirmed the mono-dispersity, and spherical nature of the particles, with FTIR measurements confirming the presence of surface bound PVA. Exposure of liposomes to 500ppm sericin highlighted a dependence of encapsulation efficiency on PVA content; 2% surface PVA proved the optimal level for sericin loading. Cytotoxicity and viability assays revealed that SP-loaded surface modified liposomes promote cellular attachment and proliferation of human skin fibroblasts without adverse toxic effects. Surface modified copolymer liposomes show high performance in maintaining structural stability, and promoting enhancements in the solubility and bio-viability of sericin. Taken together, these biocompatible constructs allow for effective controlled release, augmenting sericin activity and resulting in effective drug delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app