Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ultrasound for In Vitro, Noninvasive Real-Time Monitoring and Evaluation of Tissue-Engineered Heart Valves.

Tissue-engineered heart valves are developed in bioreactors where biochemical and mechanical stimuli are provided for extracellular matrix formation. During this phase, the monitoring possibilities are limited by the need to maintain the sterility and integrity of the valve. Therefore, noninvasive and nondestructive techniques are required. As such, optical imaging is commonly used to verify valve's functionality in vitro. It provides important information (i.e., leaflet symmetry, geometric orifice area, and closing and opening times), which is, however, usually limited to a singular view along the central axis from the outflow side. In this study, we propose ultrasound as a monitoring method that, in contrast to established optical imaging, can assess the valve from different planes, scanning the whole three-dimensional geometry. We show the potential benefits associated with the application of ultrasound to bioreactors, in advancing heart valve tissue engineering from design to fabrication and in vitro maturation. Specifically, we demonstrate that additional information, otherwise unavailable, can be gained to evaluate the valve's functionality (e.g., coaptation length, and effective cusp height and shape). Furthermore, we show that Doppler techniques provide qualitative visualization and quantitative evaluation of the flow through the valve, in real time and throughout the whole in vitro fabrication phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app