Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Insights into the Three-Dimensional Structure of Amorpha-4,11-diene Synthase and Probing of Plasticity Residues.

Amorphadiene synthase (ADS) is known for its vital role as a key enzyme in the biosynthesis of the antimalarial drug artemisinin. Despite the vast research targeting this enzyme, an X-ray crystal structure of the enzyme has not yet been reported. In spite of the remarkable difference in product profile among various sesquiterpene synthases, they all share a common α-helical fold with many highly conserved regions especially the bivalent metal ion binding motifs. Hence, to better understand the structural basis of the mechanism of ADS, a reliable 3D homology model representing the conformation of the ADS enzyme and the position of its substrate, farnesyl diphosphate, in the active site was constructed. The model was generated using the reported crystal structure of α-bisabolol synthase mutant, an enzyme with high sequence identity with ADS, as a template. Site-directed mutagenesis was used to probe the active site residues. Seven residues were probed showing their vital role in the ADS mechanism and/or their effect on product profile. The generated variants confirmed the validity of the ADS model. This model will serve as a basis for exploring structure-function relationships of all residues in the active site to obtain further insight into the ADS mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app