Add like
Add dislike
Add to saved papers

Ratiometric reactive oxygen species nanoprobe for noninvasive in vivo imaging of subcutaneous inflammation/infection.

Release of reactive oxygen species (ROS) accompanied with acute inflammation and infection often results in cell death and tissue injury. Several ROS-reactive bioluminescent probes have been investigated in recent years to detect ROS activity in vivo. Unfortunately, these probes cannot be used to quantify the degree of ROS activity and inflammatory responses due to the fact that the extent of the bioluminescent signals is also probe-concentration dependent. To address this challenge, we fabricated a ratiometric ROS probe in which both ROS-sensitive chemiluminescent agents and ROS-insensitive fluorescent reference dye were conjugated to particle carriers. The bioluminescence/reference fluorescence intensity ratios was calculated to reflect the extent of localized ROS activities while circumventing the variations in bioluminescent intensities associated with the ROS probe concentrations. The physical and chemical properties of the ratiometric probes were characterized. Furthermore, we assessed the accuracy and reproducibility of the probe in detecting ROS in vitro. The ability of the ratiometric probes to detect ROS production in inflamed/infected tissues was also examined using animal models of inflammation and infection. The overall results imply that ratiometric ROS probes can rapidly and non-invasively detect and quantify the extent of inflammatory responses and bacterial infection on wounds in real time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app