Add like
Add dislike
Add to saved papers

Optic nerve head topography and retinal structural changes in eyes with macrodisks: a comparative study with spectral domain optical coherence tomography.

PURPOSE: To compare optic nerve head parameters, the thicknesses of the peripapillary retinal nerve fiber layer (pRNFL), the macular retinal nerve fiber layer (mRNFL), the ganglion cell complex (GCC), and the ganglion cell-inner plexiform layer (GCIPL) in macrodisks and normal-sized healthy disks using spectral domain optical coherence tomography.

PATIENTS AND METHODS: A total of 88 healthy eyes (42 macrodisks and 46 normal-sized disks) were prospectively enrolled in the study. Optic nerve head parameters as well as pRNFL, mRNFL, GCC, and GCIPL thicknesses were measured in all subjects. Optic disk areas (ODAs) >2.70 mm(2) were defined as macrodisks. All spectral domain optical coherence tomography parameters were compared between normal-sized disks and macrodisks.

RESULTS: The mean age of the participants was 49.4±5.7 years in the normal size group and 51.55±6.3 years in the macrodisk group (P=0.65). The average ODAs were 2.23±0.29 mm(2) and 3.30±0.59 mm(2) in the normal size and the macrodisk groups, respectively. ODA (P<0.001), cup area (P<0.001), cup disk area ratio (P<0.001), horizontal cup disk ratio (P<0.001), vertical cup disk ratio (P<0.001), horizontal disk diameter (P<0.001), vertical disk diameter (P<0.001), and cup volume (P<0.001) were significantly higher in the macrodisk group. The inferior mRNFL thickness was significantly lower (P=0.042), and the GCC inferior and GCIPL inferior thicknesses were found to be lower with low significance (P=0.052, P=0.059, respectively) in the macrodisk group. Rim volume (P=0.622), total pRNFL (P=0.201), superior pRNFL (P=0.123), inferior pRNFL (P=0.168), average macular thickness (P=0.162), total mRNFL (P=0.171), superior mRNFL (P=0.356), total GCC (P=0.080), superior GCC (P=0.261), total GCIPL (P=0.214), and superior GCIPL (P=0.515) thicknesses were similar in both groups.

CONCLUSION: Optic disk topography and retinal structures show different characteristics in healthy eyes with macrodisks. These disk size-dependent variations suggest that large optic disks may be more susceptible to glaucomatous damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app