Add like
Add dislike
Add to saved papers

BMP signaling modulates the probability of neurotransmitter release and readily releasable pools in Drosophila neuromuscular junction synapses.

The structure and function of synapses is modulated by the interaction of presynaptic and postsynaptic neurons via cell adhesion molecules or secreted signal molecules. Bone morphogenic protein (BMP) is a secreted molecule mediating retrograde signaling that is involved in the formation and maintenance of synaptic structure throughout many animal species. However, how BMP signaling modulates presynaptic neurotransmitter release is not yet clear. We studied the function of BMP signaling factors in neurotransmitter release in Drosophila neuromuscular synapses using loss-of-function mutants in genes for BMP modulators, Wit, Mad, and Dad. Larvae with mutations in wit and mad commonly showed a decreased synaptic bouton number in neuromuscular synapses. Larvae with dad mutations showed an increased bouton number. The amplitudes of miniature EJC (mEJC) were normal for these mutants. Wit and mad mutants showed decreased evoked EJC (eEJC) amplitude and increased paired pulse facilitation, implying impaired presynaptic neurotransmitter release. We found a reduction in readily releasable neurotransmitters pool sizes in wit and mad mutants. However, dad mutants showed a normal probability of neurotransmitter release and readily releasable pool sizes and normal eEJC amplitude even with clear abnormalities in synaptic structure. These results suggested that BMP signaling was critical for each step of presynaptic neurotransmission. The results also suggested that BMP signaling modulated both synaptic structure and function independently and specifically.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app