Add like
Add dislike
Add to saved papers

Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data.

Scientific Reports 2016 September 28
Single-cell RNA-Sequencing (scRNA-Seq) is a revolutionary technique for discovering and describing cell types in heterogeneous tissues, yet its measurement of expression often suffers from large systematic bias. A major source of this bias is the cell cycle, which introduces large within-cell-type heterogeneity that can obscure the differences in expression between cell types. The current method for removing the cell-cycle effect is unable to effectively identify this effect and has a high risk of removing other biological components of interest, compromising downstream analysis. We present ccRemover, a new method that reliably identifies the cell-cycle effect and removes it. ccRemover preserves other biological signals of interest in the data and thus can serve as an important pre-processing step for many scRNA-Seq data analyses. The effectiveness of ccRemover is demonstrated using simulation data and three real scRNA-Seq datasets, where it boosts the performance of existing clustering algorithms in distinguishing between cell types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app