Add like
Add dislike
Add to saved papers

Simultaneous targeted analysis of trimethylamine-N-oxide, choline, betaine, and carnitine by high performance liquid chromatography tandem mass spectrometry.

Trimethylamine-N-oxide (TMAO) is a metabolite generated from choline, betaine and carnitine in a gut microbiota-dependent way. This molecule is associated with development of atherosclerosis and cardiovascular events. A sensitive liquid chromatographic electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) has been developed and validated for the simultaneous determination of TMAO related molecules including TMAO, betaine, choline, and carnitine in mouse plasma. Analytes are extracted after protein precipitation by methanol and subjected to LC-ESI-MS/MS without preliminary derivatization. Separation of analytes was achieved on an amide column with acetonitrile-water as the mobile phase. This method has been fully validated in this study in terms of selectivity, linearity, sensitivity, precision, accuracy, and carryover effect, and the stability of the analyte under various conditions has been confirmed. This developed method has successfully been applied to plasma samples of our mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app