Add like
Add dislike
Add to saved papers

Protein/CaCO₃/Chitin Nanofiber Complex Prepared from Crab Shells by Simple Mechanical Treatment and Its Effect on Plant Growth.

A protein/CaCO₃/chitin nanofiber complex was prepared from crab shells by a simple mechanical treatment with a high-pressure water-jet (HPWJ) system. The preparation process did not involve chemical treatments, such as removal of protein and calcium carbonate with sodium hydroxide and hydrochloric acid, respectively. Thus, it was economically and environmentally friendly. The nanofibers obtained had uniform width and dispersed homogeneously in water. Nanofibers were characterized in morphology, transparency, and viscosity. Results indicated that the shell was mostly disintegrated into nanofibers at above five cycles of the HPWJ system. The chemical structure of the nanofiber was maintained even after extensive mechanical treatments. Subsequently, the nanofiber complex was found to improve the growth of tomatoes in a hydroponics system, suggesting the mechanical treatments efficiently released minerals into the system. The homogeneous dispersion of the nanofiber complex enabled easier application as a fertilizer compared to the crab shell flakes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app