Add like
Add dislike
Add to saved papers

Mineralizing urban net-zero water treatment: Phase II field results and design recommendations.

Water Research 2016 November 16
Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design and operating experience are extremely limited. The objective of this paper is to present the results of the second phase of operation of an advanced oxidation-based NZW pilot system designed, constructed, and operated for a period of two years, serving an occupied four-person apartment. System water was monitored, either continuously or thrice daily, for routine water quality parameters, minerals, and MicroTox(®) in-vitro toxicity, and intermittently for somatic and male-specific coliphage, adenovirus, Cryptosporidium, Giardia, emerging organic constituents (non-quantitative), and the Florida drinking water standards. All 115 drinking water standards with the exception of bromate were met in this phase. Neither virus nor protozoa were detected in the treated water, with the exception of measurement of adenovirus genome copies attributed to accumulation of inactive genetic material in hydraulic dead zones. Chemical oxygen demand was mineralized to <0.7 mg/L, and all but six of 1006 emerging organic constituents analyzed were either undetected or removed >90% in treatment. Total dissolved solids were maintained at ∼500 mg/L at steady state, partially through aerated aluminum electrocoagulation. Bromate accumulation is projected to be controlled by aluminum electrocoagulation with separate disposal of backwash water. Further development of such systems and their automated/remote process control systems is recommended.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app