JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Engineering Topological Surface States of Cr-Doped Bi 2 Se 3 Films by Spin Reorientation and Electric Field.

Nano Letters 2016 October 13
The tailoring of topological surface states in topological insulators is essential for device applications and for exploring new topological phase. Here, we propose a practical way to induce the quantum anomalous Hall phase and unusual metal-insulator transitions in Cr-doped Bi2 Se3 films based on the model Hamiltonian and first-principles calculations. Using the combination of in-plane and plane-normal components of the spin along with external electric fields, we demonstrate that the topological state and band structures of topological insulating films exhibit rich features such as the shift of Dirac cones and the opening of nontrivial band gaps. We also show that the in-plane magnetization leads to significant suppression of inter-TSS scattering in Cr-doped Bi2 Se3 . Our work provides new strategies to obtain the desired electronic structures for the device, complementary to the efforts of an extensive material search.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app