Add like
Add dislike
Add to saved papers

Porous cellulose spheres: Preparation, modification and adsorption properties.

Chemosphere 2016 December
Porous cellulose spheres (PCS) were fabricated by precipitating the spheres from a cellulose ionic liquid solution, followed by freezing, solvent exchange, and drying. PCS had low crystallinity and a large surface area that facilitated modification with trisodium trimetaphosphate (STMP) to introduce phosphate ester groups into the porous structure of the heterogeneous system. The STMP-modified PCS (SPCS) were used to remove heavy metal ions from aqueous solution. With increasing STMP dosage, the adsorption capacity of SPCS obviously improved due to chelation between Pb(2+) and phosphate ester groups. The kinetic adsorption and isotherm data matched the pseudo-second order model and the Langmuir model well. The maximum adsorption capacity reached 150.6 mg g(-1) for SPCS. SPCS were competitive with other absorbents because the phosphate ester groups and porous structure contributed to Pb(2+) adsorption. Moreover, SPCS can be regenerated with ethylenediamine tetraacetic acid disodium salt (EDTA) solution for repetitious adsorption of Pb(2+).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app