Add like
Add dislike
Add to saved papers

Neuroprotective effects of Caralluma tuberculata on ameliorating cognitive impairment in a d-galactose-induced mouse model.

Cognitive deficiency and oxidative stress have been well documented in aging disorders including Alzheimer's disease. The aim of this study was to investigate the therapeutic efficacy of Caralluma tuberculata methanolic extract (CTME) on cognitive impairment in mice induced with d-galactose. In this study we assessed the therapeutic efficacy of CTME on cognitive impairment in mice induced with d-galactose by conduction of behavioral and cognitive performance tests. In order to explore the possible role of CTME against d-galactose-induced oxidative damages, various biochemical indicators were assessed. Chronic administration of d-galactose (150mg/kgd, s.c.) for 7 weeks significantly impaired cognitive performance (in step-through passive, active avoidance test, Hole-Board test, Novel object recognition task and Morris water maze) and oxidative defense as compared to the control group. The results revealed that CTME treatment for two weeks (100, 200 and 300mg/kg p.o) significantly ameliorated cognitive performance and oxidative defense. All groups of CTME enhanced the learning and memory ability in step-through passive, active avoidance test, Hole-Board test Novel object recognition task and Morris water maze. Furthermore, high and middle level of CTME (300 and 200mg/kg p.o) significantly increased Total antioxidative capacity (T-AOC), Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activity, neprilysin (NEP), and β-site AβPP cleaving enzyme 1 (BACE1) expression while Nitric Oxide (NO), Nitric Oxide Synthase (NOS) activity and Malondialdehyde (MDA) concentration, and the level of Aβ1-42 and presenilin 1 (PS1) were decreased. The present study showed that CTME have a significant relieving effect on learning, memory and spontaneous activities in d-galactose-induced mice model, and ameliorates cognitive impairment and biochemical dysfunction in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app