Add like
Add dislike
Add to saved papers

Effects of relaxin on cardiac fibrosis, apoptosis, and tachyarrhythmia in rats with myocardial infarction.

Relaxin is safe and efficient to use for treating acute heart failure. However, the electrophysiological and arrhythmogenic effects of relaxin in an experimental healing infarction model remain unknown. In this study, a rat model with myocardial infarction (MI) received relaxin (0.5mg/kg per day) or vehicle (sodium acetate) infusion via implantable mini-pumps for 2 weeks. Thereafter, hemodynamic measurement, electrophysiological study, histological examination, and immunofluorescence labeling were performed. Relaxin treatment significantly attenuated tachyarrhythmia inducibility and cardiac dysfunction in healing infarcted heart. Epicardial monophasic action potentials showed that relaxin significantly reduced the dispersion of action potential duration in postinfarcted hearts. Histological study revealed that relaxin significantly reduced myocardial apoptosis and cardiac fibrotic collagen deposition. Western blot revealed that relaxin treatment significantly suppressed the protein expression levels of TGFβ1, α-SMA, and type I collagen. Furthermore, abnormal alterations of Connexin 43, including reduction and lateralization, were significantly attenuated by relaxin treatment at the infarcted border zone. This study provides strong evidence that continuous relaxin intervention ameliorates cardiac fibrosis and apoptosis, attenuates remodeling of gap junction and focal heterogeneity of repolarization, and reduces vulnerability to tachyarrhythmias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app