Add like
Add dislike
Add to saved papers

Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles.

Selective localization of biomolecules at the hot spots of a plasmonic nanoparticle is an attractive strategy to exploit the light-matter interaction due to the high field concentration. Current approaches for hot spot targeting are time-consuming and involve prior knowledge of the hot spots. Multiphoton plasmonic lithography is employed to rapidly immobilize bovine serum albumin (BSA) hydrogel at the hot spot tips of a single gold nanotriangle (AuNT). Regioselectivity and quantity control by manipulating the polarization and intensity of the incident laser are also established. Single AuNTs are tracked using dark-field scattering spectroscopy and scanning electron microscopy to characterize the regioselective process. Fluorescence lifetime measurements further confirm BSA immobilization on the AuNTs. Here, the AuNT-BSA hydrogel complexes, in conjunction with single-particle optical monitoring, can act as a framework for understanding light-molecule interactions at the subnanoparticle level and has potential applications in biophotonics, nanomedicine, and life sciences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app