Add like
Add dislike
Add to saved papers

Atg5-dependent autophagy plays a protective role against methylmercury-induced cytotoxicity.

Toxicology Letters 2016 November 17
Methylmercury (MeHg) is a widespread environmental pollutant and causes a serious hazard to health worldwide. However, molecular mechanisms underlying MeHg toxicity remain elusive. We show that MeHg reduced mouse embryonic fibroblast (MEF) viability in a dose-dependent manner. Furthermore, MeHg treatment increased levels of autophagy markers LC3-II and p62, possibly by acting on the MAPKs signaling pathway in several cell types. MeHg exposure elevated the number of LC3 puncta in stable GFP-LC3 MEFs and the number of autophagic vacuoles. The accumulation of LC3-II and p62 increased further when complementing MeHg with autophagy inhibitor, chloroquine. Moreover, we found that autophagy-related gene 5-deficient (Atg5(-/-)) MEFs exhibited higher sensitivity and higher levels of p62 compared to their wild-type counterparts following MeHg exposure. This suggested that p62 was upregulated at the transcription level by MeHg and degraded by Atg5-dependent autophagy. Our data demonstrate that MeHg exposure promotes autophagy, and Atg5-dependent autophagy serves to protect cells from MeHg cytotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app