Add like
Add dislike
Add to saved papers

In vivo cloning of large chromosomal segments into a BAC derivative by generalized transduction and recombineering in Salmonella enterica.

Recombineering has been used to facilitate the development of in vivo cloning methods. However, the method relies heavily on PCR, which still generates a much higher error rate than DNA replication in vivo, even when amplifying large DNA inserts. Here, a precise technique is reported in Salmonella enterica that enables the cloning of up to at least 19 kb target chromosomal DNA segments that had been marked by FRTs, which were derived from two consecutive lambda Red-mediated recombination events. P22 phage was utilized to transduce the target DNA segments from donor strains to recipient strains harboring a derivative of bacterial artificial chromosome (BAC) containing a FRT and a plasmid expressing Flp recombinase. This method was successful in cloning a gene cluster responsible for lipopolysaccharide (LPS) modifications that confer polymyxin B resistance and in complementing its mutant. Further optimized procedures should be widely applicable because large insert fragments are precise clones of the wild-type genome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app