JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of autophagy sensitises cells to hydrogen peroxide-induced apoptosis: Protective effect of mild thermotolerance acquired at 40°C.

Various toxic compounds produce reactive oxygen species, resulting in oxidative stress that threatens cellular homeostasis. Yet, lower doses of stress can stimulate defence systems allowing cell survival, whereas intense stress activates cell death pathways such as apoptosis. Mild thermal stress (40°C, 3h) induces thermotolerance, an adaptive survival response that renders cells less sensitive to subsequent toxic stress, by activating defence systems like heat shock proteins, antioxidants, anti-apoptotic and ER-stress factors. This study aims to understand how autophagy and apoptosis are regulated in response to different doses of H2O2, and whether mild thermotolerance can protect cervical carcinoma cells against apoptosis by stimulating autophagy. Autophagy was monitored through Beclin-1 and LC3 expression and acid compartment activity, whereas apoptosis was tracked by caspase activity and chromatin condensation. Exposure of HeLa and C33 A cells to H2O2 for shorter times (15-30min) transiently induced autophagy; apoptosis was activated after longer times (1-3h). Mild thermotolerance at 40°C enhanced activation of autophagy by H2O2. Disruption of autophagy using bafilomycin A1 and 3-methyladenine sensitised cells to apoptosis induced by H2O2, in non-thermotolerant cells and, to a lesser extent, in thermotolerant cells. Inhibition of autophagy enhanced apoptosis through the mitochondrial, death receptor and endoplasmic reticulum pathways. Autophagy was activated by lower doses of stress and protects cells against apoptosis induced by higher doses of H2O2. This work improves understanding of mechanisms that might be involved in toxicity of various compounds and could eventually lead to protective strategies against deleterious effects of toxic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app