Add like
Add dislike
Add to saved papers

A viable method to predict acoustic streaming in presence of cavitation.

The steady liquid flow observed under ultrasonic emitters generating acoustic cavitation can be successfully predicted by a standard turbulent flow calculation. The flow is driven by the classical averaged volumetric force density calculated from the acoustic field, but the inertial term in Navier-Stokes equations must be kept, and a turbulent solution must be sought. The acoustic field must be computed with a realistic model, properly accounting for dissipation by the cavitation bubbles [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Comparison with 20kHz experiments, involving the combination of acoustic streaming and a perpendicular forced flow in a duct, shows reasonably good agreement. Moreover, the persistence of the cavitation effects on the wall facing the emitter, in spite of the deflection of the streaming jet, is correctly reproduced by the model. It is also shown that predictions based either on linear acoustics with the correct turbulent solution, or with Louisnard's model with Eckart-Nyborg's theory yields unrealistic results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app