Add like
Add dislike
Add to saved papers

Multi-window detection for P-wave in electrocardiograms based on bilateral accumulative area.

BACKGROUND AND OBJECTIVE: P-wave detection is one of the most challenging aspects in electrocardiograms (ECGs) due to its low amplitude, low frequency, and variable waveforms. This work introduces a novel multi-window detection method for P-wave delineation based on the bilateral accumulative area.

METHOD: The bilateral accumulative area is calculated by summing the areas covered by the P-wave curve with left and right sliding windows. The onset and offset of a positive P-wave correspond to the local maxima of the area detector. The position drift and difference in area variation of local extreme points with different windows are used to systematically combine multi-window and 12-lead synchronous detection methods, which are used to screen the optimization boundary points from all extreme points of different window widths and adaptively match the P-wave location.

RESULTS: The proposed method was validated with ECG signals from various databases, including the Standard CSE Database, T-Wave Alternans Challenge Database, PTB Diagnostic ECG Database, and the St. Petersburg Institute of Cardiological Technics 12-Lead Arrhythmia Database. The average sensitivity Se was 99.44% with a positive predictivity P+ of 99.37% for P-wave detection. Standard deviations of 3.7 and 4.3ms were achieved for the onset and offset of P-waves, respectively, which is in agreement with the accepted tolerances required by the CSE committee.

CONCLUSION: Compared with well-known delineation methods, this method can achieve high sensitivity and positive predictability using a simple calculation process. The experiment results suggest that the bilateral accumulative area could be an effective detection tool for ECG signal analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app