Add like
Add dislike
Add to saved papers

IinQ attenuates systemic inflammatory responses via selectively impairing the Myddosome complex formation upon TLR4 ligation.

Biochemical Pharmacology 2016 December 2
A specific small-molecule inhibitor of the TLR4 signaling complex upstream of the IKK would likely provide therapeutic benefit for NF-κB-mediated inflammatory disease. We previously identified brazilin as a selective upstream IKK inhibitor targeting the Myddosome complex. In this study, using a cell-based ubiquitination assay for IRAK1 and a chemical library comprising a series of structural analogues of brazilin, a novel small molecule, 2-hydroxy-5,6-dihydroisoindolo[1,2-a]isoquinoline-3,8-dione (IinQ), was identified as a selective and potent inhibitor of IRAK1-dependent NF-κB activation upon TLR4 ligation. In RAW264.7 macrophages, IinQ drastically suppressed activation of upstream IKK signaling events including membrane-bound IRAK1 ubiquitination and IKK phosphorylation by the TLR4 ligand, resulting in reduced expression of proinflammatory mediators including IL-6, TNF-α, and nitric oxide. Interestingly, IinQ did not suppress NF-κB activation via the TLR3 ligand, DNA damaging agents, or a protein kinase C activator, indicating IinQ is specific for TLR4 signaling. Analysis of upstream signaling events further confirmed that IinQ disrupts the MyD88-IRAK1-TRAF6 complex formation induced by LPS treatment, without affecting TLR4 oligomerization. Moreover, intravenous administration of IinQ significantly reduced lethality and attenuated systemic inflammatory responses in an in vivo mouse model of endotoxin shock following LPS challenge. Thus, IinQ represents a novel class of brazilin analogues with improved potency and specificity toward disruption of Myddosome complex formation in TLR4 signaling, indicating that IinQ may be a promising therapeutic candidate for the treatment of systemic inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app