Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Efficacious In Vitro and In Vivo Effects of Dihydrosphingosine-Ethambutol Analogues Against Susceptible and Multi-drug-resistant Mycobacterium tuberculosis.

BACKGROUND AND AIMS: Tuberculosis (TB) is a major worldwide health problem in part due to the lack of new drugs and the emergence of multidrug-resistant strains (MDR). The aim of this study was to select anti-tuberculosis drug candidates from a collection of 69 synthetic sphingosine-ethambutol analogues through in vitro and in vivo evaluations.

METHODS: The 69 compounds were evaluated in vitro against two Mycobacterium tuberculosis strains, a drug susceptible (H37Rv) and a MDR clinical isolate (CIBIN-99). Four selected compounds, those that exhibited the highest potency in vitro, were tested in vivo using a model of progressive TB in BALB/c mice infected with the drug susceptible strain, either alone or combined with conventional chemotherapy, as well as in mice infected with the MDR strain. The acute toxicity was evaluated on male and female adult BALB/c mice.

RESULTS: Ten of the evaluated compounds resulted more potent in vitro than ethambutol. The experimental compound 2b (2-aminopalmitol benzyl ether) was the most efficacious and also showed additive effects in combination with conventional chemotherapy. It did not exhibit toxicity (LD50 >2000 mg/kg).

CONCLUSIONS: Compound 2b can be considered as a new drug candidate to continue its development against M. tuberculosis MDR strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app