Add like
Add dislike
Add to saved papers

Detecting Long-Range Enhancer-Promoter Interactions by Quantitative Chromosome Conformation Capture.

Chromosome conformation capture (3C) technology and its derivatives are currently the primary methodologies measuring contacts among genomic elements. In fact, the lion share of what is currently known about chromosome folding is based on 3C-related approaches. For example, distal enhancers are commonly in physically proximity with their target genes, forming chromatin loops. Additional layers of chromatin organization have been described using 3C-based techniques, including topological domains (TADs) and sub-TADs. Finally, inter-chromosomal interactions have been reported although they are much less frequent. 3C is becoming increasingly widespread in its use for understanding genome organization. Here we provide a protocol for quantitative 3C using real-time PCR analysis, along with essential quality controls and normalization methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app