Add like
Add dislike
Add to saved papers

Fully Printed and Encapsulated SWCNT-Based Thin Film Transistors via a Combination of R2R Gravure and Inkjet Printing.

Fully printed thin film transistors (TFT) based on poly(9,9-di-n-dodecylfluorene) (PFDD) wrapped semiconducting single walled carbon nanotube (SWCNT) channels are fabricated by a practical route that combines roll-to-roll (R2R) gravure and ink jet printing. SWCNT network density is easily controlled via ink formulation (concentration and polymer:CNT ratio) and jetting conditions (droplet size, drop spacing, and number of printed layers). Optimum inkjet printing conditions are established on Si/SiO2 in which an ink consisting of 6:1 PFDD:SWCNT ratio with 50 mg L(-1) SWCNT concentration printed at a drop spacing of 20 μm results in TFTs with mobilities of ∼25 cm(2) V(-1) s(-1) and on-/off-current ratios > 10(5). These conditions yield excellent network uniformity and are used in a fully additive process to fabricate fully printed TFTs on PET substrates with mobility values > 5 cm(2) V(-1) s(-1) (R2R printed gate electrode and dielectric; inkjet printed channel and source/drain electrodes). An inkjet printed encapsulation layer completes the TFT process (fabricated in bottom gate, top contact TFT configuration) and provides mobilities > 1 cm(2) V(-1) s(-1) with good operational stability, based on the performance of an inverter circuit. An array of 20 TFTs shows that most have less than 10% variability in terms of threshold voltage, transconductance, on-current, and subthreshold swing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app