Add like
Add dislike
Add to saved papers

Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication.

Optics Express 2016 September 20
Visible light communication (VLC) is an advanced and high-efficiency wireless communication technology. As one of the most important light sources in VLC, conventional white light emitting diode (WLED) based on Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce<sup>3+</sup> (YAG:Ce) phosphor limits the system transmitting rate severely due to its narrow modulation bandwidth. Considering the short fluorescent lifetime of quantum dots (QDs), QD-LEDs with wide modulation bandwidths were designed here to improve the transmitting rate of VLC. CdSe/ZnS core/shell QDs and related luminescent microspheres (LMS) were implemented as light conversion materials for the QD-LEDs. Compared with conventional phosphor WLED, the proposed QD-LED and QD-WLED reached maximum improvement on modulation bandwidth at 74.19% and 67.75% respectively. Furthermore, mathematical modeling of smearing was analyzed to establish the relationship between fluorescent lifetime and modulation bandwidth. Our findings will provide an effective solution of white LEDs for high speed VLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app