Add like
Add dislike
Add to saved papers

Hybrid algorithm for phase retrieval from a single spatial carrier fringe pattern.

Applied Optics 2016 September 21
A hybrid algorithm is proposed in this study for demodulating a single spatial carrier fringe pattern (FP) of interferometric measurement, which essentially combines the spatial carrier phase shift (SCPS) method and Fourier transform (FT) method. It firstly extracts three phase-shifted FPs from a single spatial carrier FP, then employs the FT method and a subtraction operation to determine the phase shift of three phase-shifted FPs, and finally retrieves the phase map using a least-square phase shift algorithm. The subtraction operation could considerably mitigate the inherent edge error of the FT method, resulting in an increase of accuracy compared with the FT method. It also does not require the background and modulation amplitude of the spatial carrier FP to be constant; thus it is robust and quite suitable for engineering. The factors that may influence the performance of the proposed algorithm are analyzed, including the random and speckle noise, carrier frequency, shape of the background, and modulation amplitude. The feasibility of the proposed algorithm is validated by two experiments, comparing them with the temporal phase-shifted method. The proposed algorithm is expected to be used in interferometric measurement under adverse environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app