Journal Article
Review
Add like
Add dislike
Add to saved papers

Systems pharmacology and enhanced pharmacodynamic models for understanding antibody-based drug action and toxicity.

MAbs 2017 January
Pharmacokinetic (PK) and pharmacodynamic (PD) models seek to describe the temporal pattern of drug exposures and their associated pharmacological effects produced at micro- and macro-scales of organization. Antibody-based drugs have been developed for a large variety of diseases, with effects exhibited through a comprehensive range of mechanisms of action. Mechanism-based PK/PD and systems pharmacology models can play a major role in elucidating and integrating complex antibody pharmacological properties, such as nonlinear disposition and dynamical intracellular signaling pathways triggered by ligation to their cognate targets. Such complexities can be addressed through the use of robust computational modeling techniques that have proven powerful tools for pragmatic characterization of experimental data and for theoretical exploration of antibody efficacy and adverse effects. The primary objectives of such multi-scale mathematical models are to generate and test competing hypotheses and to predict clinical outcomes. In this review, relevant systems pharmacology and enhanced PD (ePD) models that are used as predictive tools for antibody-based drug action are reported. Their common conceptual features are highlighted, along with approaches used for modeling preclinical and clinically available data. Key examples illustrate how systems pharmacology and ePD models codify the interplay among complex biology, drug concentrations, and pharmacological effects. New hybrid modeling concepts that bridge cutting-edge systems pharmacology models with established PK/ePD models will be needed to anticipate antibody effects on disease in subpopulations and individual patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app