Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Profiling nitric oxide metabolites in patients with idiopathic pulmonary arterial hypertension.

Intact nitric oxide (NO) signalling is critical to maintaining appropriate pulmonary vascular tone. NO bioavailability is reduced in patients with pulmonary arterial hypertension. This study aimed to examine the impact of NO plasma metabolites (NOx) relative to haemodynamic dysfunction and mortality in patients with idiopathic pulmonary arterial hypertension (IPAH).A total of 104 consecutive adult IPAH patients who had undergone genetic counselling when first diagnosed were enrolled in this prospective study.The median concentration of NOx (μmol·L-1 ) was significantly lower in IPAH patients compared with healthy subjects, and was decreased further in 19 carriers of the bone morphogenetic protein-receptor type-2 (BMPR2) mutation compared to non-carriers. Reduced concentrations of NOx were correlated with mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance (PVR) and cardiac output. Compared with higher baseline NOx concentrations, patients with a NOx concentration of ≤10 μmol·L-1 had a markedly worse survival. After adjustment for clinical features, a BMPR2 mutation and haemodynamics, a lower NOx level remained an increased risk of mortality.Patients with IPAH had lower levels of plasma NOx, which correlated inversely with mPAP, PVR and survival. Plasma NOx may be an important biomarker and prognostic indicator, suggesting that reduced NO synthesis contributes to the pathogenesis of IPAH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app