Add like
Add dislike
Add to saved papers

Characterization of urocortin as an anti-apoptotic protein in experimental ischemia-reperfusion model of the rat testis.

The objective of this study was to investigate the role of urocortin in testicular apoptosis using an experimental ischemia-reperfusion rat model. To evaluate the change in urocortin expression and apoptotic status in the testes following ischemia-reperfusion, the left testes of rats were rotated clockwise by 720° for 1 h, and were then harvested at 0, 1, 3, 6 and 24 h after detorsion (n = 5 in each group). A time-dependent increase in the expression levels of urocortin was noted until 6 h after reperfusion, but the expression of urocortin was markedly decreased 24 h after reperfusion. However, a TUNEL assay showed that the proportion of germ cells undergoing apoptosis significantly increased 24 h after reperfusion compared with that of 6 h after reperfusion. To clarify whether or not urocortin directly regulates the testicular apoptosis induced by ischemia-reperfusion, either astressin, an antagonist of urocortin, or normal saline was injected into the rat testes 15 min before detorsion, followed by the testicular torsion. The testes were then removed 3 h after detorsion (n = 5 in each group). The testicular injection of astressin significantly increased the proportion of TUNEL-positive germ cells, and significantly decreased expression of Bcl-2 and Bcl-xL. In addition, the level of phosphorylated ERK 1/2, but not that of phosphorylated Akt, was significantly reduced by the intratesticular administration of astressin. These findings suggest that urocortin may play a cytoprotective role in the germ cells in response to ischemia-reperfusion injury through the activation of major anti-apoptotic proteins, as well as by the mitogen-activated protein kinase signaling pathway activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app