Add like
Add dislike
Add to saved papers

Generation of affibody molecules specific for HPV16 E7 recognition.

Oncotarget 2016 November 9
Cervical cancer caused by infection with high-risk human papillomavirus remains to be the most deadly gynecologic malignancy worldwide. It is well documented that persistent expression of two oncogenes (E6/E7) plays the key roles in cervical cancer. Thus, in vivo detection of the oncoproteins is very important for the diagnosis of the cancer. Recently, affibody molecules have been demonstrated to be a powerful targeting probe for tumor-targeted imaging and diagnosis. In this study, four HPV16 E7-binding affibody molecules (Z HPV16 E7127, Z HPV16E7301, Z HPV16E7384 and Z HPV16E7745) were screened from a phage-displayed peptide library and used for molecular imaging in tumor-bearing mice. Biosensor binding analyses showed first that the four affibody molecules bound to HPV16 E7 with very high affinity and specificity. They co-localized with E7 protein only in two HPV16-positive cancer cells (SiHa and CaSki). Furthermore, affibody ZHPV16E7384 was conjugated with Dylight755 and used for in vivo tumor-imaging. Strongly high-contrast tumor retention of this affibody only occurred in HPV16-derived tumors of mice as early as 30 min post-injection, not in HPV-negative and HPV18-derived tumors. The accumulation of Dylight755-conjugated ZHPV16E7384 in tumor was achieved over a longer time period (24 h). The data here provide strong evidence that E7-specific affibody molecules have great potential used for molecular imaging and diagnosis of HPV-induced cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app