Add like
Add dislike
Add to saved papers

Enantioselective cascade biocatalysis for deracemization of 2-hydroxy acids using a three-enzyme system.

BACKGROUND: Enantiopure 2-hydroxy acids are key intermediates for the synthesis of pharmaceuticals and fine chemicals. We present an enantioselective cascade biocatalysis using recombinant microbial cells for deracemization of racemic 2-hydroxy acids that allows for efficient production of enantiopure 2-hydroxy acids.

RESULTS: The method was realized by a single recombinant Escherichia coli strain coexpressing three enzymes: (S)-2-hydroxy acid dehydrogenase, (R)-2-keto acid reductase and glucose dehydrogenase. One enantiomer [(S)-2-hydroxy acid] is firstly oxidized to the keto acid with (S)-2-hydroxy acid dehydrogenase, while the other enantiomer [(R)-2-hydroxy acid] remains unchanged. Then, the keto acid obtained reduced to the opposite enantiomer with (R)-2-keto acid reductase plus cofactor regeneration enzyme glucose dehydrogenase subsequently. The recombinant E. coli strain coexpressing the three enzymes was proven to be a promising biocatalyst for the cascade bioconversion of a structurally diverse range of racemic 2-hydroxy acids, giving the corresponding (R)-2-hydroxy acids in up to 98.5 % conversion and >99 % enantiomeric excess.

CONCLUSIONS: In summary, a cascade biocatalysis was successfully developed to prepare valuable (R)-2-hydroxy acids with an efficient three-enzyme system. The developed elegant cascade biocatalysis possesses high atom efficiency and represents a promising strategy for production of highly valued (R)-2-hydroxy acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app